SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

Drought Hazard Indexes

Presented by:

Mr. Floris VERHAGEN, NKE senior groundwater expert

25 September 2018, Murcia, Spain

This Project is funded by the European Union

Published daily at website Royal Netherlands Meteorological Institute

Rainfall deficit in 2018. Average 2018

Concepts of drought

Types of drought

- Meteorological droughts: abnormally low precipitation over a region for a period of time.
- Agricultural droughts: moisture deficit in the soil to meet the growing needs of a particular crop at any stage of growth.
- Hydrological droughts: decrease in water flows and storages (artificial reservoirs), and groundwater, so they are not adequate to provide water resources to established water uses.
- **Socio-economic droughts**: water shortage affects people and economic activities.

Concepts of drought

Van Loon, WIREs Water 2015

Meteorological drought

Definition

- Most simple: deficit of water compared with normal conditions (Sheffield and Wood, 2011)
- Widely accepted: Sustained and regionally extensive occurrence of below average natural water availability (Tallaksen and van Lanen, 2004)
- It is not: low flow, aridity, water scarcity or desertification

Characterization

- Severity → drought index
- Time of onset and duration → a slow onset and recovery
- Areal extent
- Frequency

Propagation in drought

Runoff and soil moisture variability respond to shortterm precipitation anomalies

(a)

Streamflow and groundwater levels react to long-term anomalies.

Van Loon, WIREs **Water 2015**

Standardized Drought indexes

Approach

- Anomalies of a normal situation
- Relative approach for regional use

Examples

- Standardized Precipitation Index: SPI
- Standardized Precipitation And Evapotranspiration Index: SPEI
 - Precipitation, mean temperature and latitude of the site(s)
- Standardized Snow Melt and Rain Index: SMRI
- Palmer Drought Severity Index: PDSI
 - Bucket-type model for soil moisture calculations including calibration.
 - Fixed time scale 9 12 months
- Standardized Soil Moisture Anomalies: SMA
- Standardized Streamflow Index: SRI
- Standardized Water-Level Index (SWI)

 anomalies in groundwater levels
- There are many more

Standardized Precipitation Index: SPI

Approach

- Formulated by Tom Mckee et al. in 1993
- Only precipitation as input data
- Based on the long-term precipitation record (> 30 years)
- Calculation over a range of time scales
 - 1 2 months meteorological drought
 - 1 6 months agricultural drought
 - 6 24 months hydrological drought
- Takes no account of climate change due to temperature rise

Value	Category
Higher than 2	Extremely Wet
Between 1.5 and 2	Severely Wet
Between 1 and 1.5	Wet
Between 0.5 and 1	Moderately Wet
Between 0 and 0.5	Normal
Between -0.5 and -1	Moderately Dry
Between -1 and -1.5	Dry
Between -1.5 and -2	Severely Dry
Lower than -2	Extremely Dry

Standardized Precipitation Index: normal distribution

Approach

- Calculation by fitting longterm precipitation from a gamma transforming into normal distribution to calculate the mean SPI value as zero.
- Wetness is expressed by positive SPI values while dryness by negative values.

Y. Qin et al. / Journal of Hydrology 526 (2015)

Standardized Precipitation Index: examples

Year

Standardized Precipitation Index: examples

SPI values for five month and sixty month timescales, in Idaho climate zone 5 (Southwestern Valleys). The sixty month SPI clearly tracks the long-term drought pattern. The SPI parameters for the data transformation were constructed using 111 years of observations. Contributed by J. Keyantash

SPEI Global Drought Monitor

Correlation between SPI and groundwater levels

Groundwater level data set in Texas, USA

SPI-24 shows best correlation with groundwater level

Standardised Groundwaterlevel index (SGI)

Based on 14 sites in the UK

- Developed by Bloomfield and Marchant (2013)
- Indicator of groundwater drought
- Relative to mean hydrological baseline
- Based on SPI
- Main difference: non-parametric normal scores transformation
- SGI time series are a function of SGI autocorrelation
- Knowledge about hydro geological context is needed

Standardised Groundwaterlevel index (SGI)

Ccross-correlation

- Good correlations between SGI and SPI
- Lag time is different
- All major droughts had large geographical footprints

Relationship irrigation – rainfall deficit

Type 2: Threshold Level Method

Approach

- Predefined threshold value
- Also called deficit method → lacking volume of water
- Related to demand for irrigation, ecology, industry,...
- Seasonal or constant threshold value can be used
- Using groundwater levels or stream flow

Example stream flow

Type 2: Threshold Level Method

Approach

- Predefined threshold value
- Also called deficit method → lacking volume of water
- Related to demand for irrigation, ecology, industry,...
- Seasonal or constant threshold value can be used
- Using groundwater levels or stream flow

Example stream flow

Drawback of SPI/SPEI and challenges

Drawback

- Not detailed enough for local water management
- Because not all processes are incorporated
 - Correct evapotranspiration, run-off, snow

Challenges and alternative sources of information

- Use of large scale river run-off data
- Better understanding of soil moisture drought propagation
 - From catchment to continental scale
- Anthropogenic effects like abstractions or reservoirs
- Use of large scale data sets
 - Satellite data like GRACE, Sentinel, Landsat

SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

Thank you for your attention.

This Project is funded by the European Union

